Railtech Wiki
Advertisement
CTA Cab-signal-display

芝加哥地鐵L線電車上的車內信號顯示,圖中垂直橙燈顯示了信號速度.

車內信號, 車内信号 (しゃないしんごう), Cab Signal 是鐵路的信號保安設備之一,是把信號的顯示由以往靠路線設施(Trackside Equipment, 即由鐵軌旁的色燈信號機顯示信號改為把信號在軌道迴路傳送到列車駕駛室內顯示信號。

概要

起初車内信号只是把色燈信號機的信號接到車內的顯示器作色燈信號機的輔助用,但是現在已發展到現在可以顯示信號速度,路線狀況,甚至是控制列車.現代的車內信號多數是結合了其他是信號系統,換言之,車內信號在現代多是信號系統的一部分.所以現代的車內信號也可以歸類為列車情報信號控制系統Communication Based Train Control System, CBTC的一種.

最初試驗車內信號的是英國, 試驗在1910年代開始,隨後有美國和荷蘭分別在1920年代和1940年代試驗車內信號。而美國的賓夕法尼亞鐵路與US&S(Union Swtich & Signal)發展出以無線電傳送信號資料就成為了主導,也成為了而現代的車內信號的開端ATC的基礎.

車内信號的種類

車内信號主要是可以分作3種。

點控制・連續控制・PTC

  • 以信号機作為訊號控制點, 發出警報
  • 信號系統連續不斷地監察列車,發出信號速度和控制列車的速度
  • PTC(Positive Train Control)

點控制

Amt Cab-signal-display

在反映前方是停止信號的車內信號顯示

點控制系統是透過故定的傳送點把列車正在接近的信號機的資料更新到駕駛室內。一般的非車內信號保安裝置(保障系統)都是在列車通過限制信號(例:阻險信號)後才剎車的,但是在高速運行的路線上這種做法往往都未能成功把列車間的距離控制得宜,除非是犧牲列車間的容許密度, 把閉塞範圍放大。所以點控制車內信號的作用是預先告知駕駛員前方信號,駕駛員再逐步控制列車的車速至信號燈前,又或者是在能見度不佳的情況下(例:大霧又或者在隧道內)在車內得知前方信號.如果前方的色燈信號機是限制信號(例:注意信號)很多點控制的系統就會發出一定的通知甚至是警報,當駕駛員無視(例:沒有按下確認鍵)這些警報的話,列車就會在一定時間後施行制動。

不過在早期,點控制系統的最大問題是只把前方信號傳入駕駛室,不會有任何功能防止事故和人為錯誤。所以及後就結合了其他的保安裝置(例:AWS)來確保即使駕駛員是得悉前方為限制信號又甚至結合了ATS確保列車的安全。

直到今天, TGV在英國境內都是使用點控制形式來運作,而車內信號會比對前方信號機的顯示,當有超速就會施行緊急制動.

連續控制

連續控制,利用設在軌道的迴路來向列車傳送信號的資料[1].美國普遍採用的系統是反映前方信號機的資料,與點控制相似,但是分別在於美國的系統是由設在軌道的迴路不停止更新資料。而連續控制最大的用途是給車上的速度控制裝置不經人手地控制列車的速度,也可以大幅提高速度限制的靈活度(例如:設立臨時速度限制), 自動列車控制系統(ATC)就是透過連續控制的技術, 因應前車的距離而調節信號速度,還可以因應路線狀況(如:平面交差事故,地震等)而自動制停列車[2].也因為連續控制的技術是以整條路線作信號系統的控制範圍,現在較先進的數碼ATC(Digital Automatic Train Control System)Seltrac還可以因應列車的性能,種別而計算出度身訂造的減速曲線,計算列車在速度限制前的開始制動點,令列車的距離可以縮小之餘也不用每次制動都只使用最大減速度.

PTC

PTC(Positive Train Control)是由以往依靠路線設備運作改為由OCC透過數碼列車無線方式來提供信號指示到車內。

PTCでは、指令センターと列車の間を無線通信技術で結んで、コストの掛かる路側設備を削減している。このようなシステムはコミュニケーションベースの列車制御(CBTC: Communication Based Train Control)として知られている。CBTCは、従来の閉塞連動装置の代わりになる様々な装置で構成されており、GPS慣性航法装置など従来とは異なる列車位置検出手段や、デジタル無線による列車間・路側装置(分岐器踏切など)・運転指令員や指令センターとの交信などが含まれている。

これらのシステムは、次第に都市高速交通システムにおいて導入が進められており(ニューヨークのカナージー線(Canarsie Line)での試験など)、都市間の幹線でも試験が行われている。しかしながら未だに技術的に成熟しておらず、開発中か試験段階に留まっている。

情報伝送

車内信号システムでは、地上から車上への情報伝送手段が必要となる。情報伝送手段としては以下のようなものがある。

  • 機械的伝送
  • 磁気伝送
  • 電流伝送
  • 電磁誘導伝送
  • コード軌道回路

機械的伝送

模板:Main 最も基本的な車内信号システムは、地上の装置と列車との機械的な接触によるものである。ニューヨーク市都市交通局ロンドン地下鉄などのいくつかの路線で現在でも使用されている[3]。打子式ATSと呼ばれているものである。停止信号が現示されると、線路脇に備えられている打子と呼ばれるアームが立ち上がる。列車の台車には非常ブレーキのバルブが備えられている。停止現示の信号機を冒進すると、打子が非常ブレーキのバルブを開いて非常停止させる[4]

この方式のATSも、原始的なものではあるが車内信号の一種と言える。この方式では停止と進行の2現示しか存在しない。速度の制御はできず、運転台への信号の表示をせず、また実際に列車が信号を冒進してからでなければブレーキを動作させないが、それでもこのシステムがない場合に比べるとはるかに安全なものである。

磁気伝送

機械的伝送手段の変形として、磁界が存在しないことを利用して停止現示を伝送するシステムがある[5]2003年までイギリスの鉄道で標準として用いられていた、自動列車警報装置(AWS: Automatic Warning System)は、磁気的に情報を伝送するシステムの例である。

AWSでも、2現示式のシステムとなっている。しかしながら、AWSでは自動的な列車の停止はできず、単に警報を出すだけである。AWSを導入したことにより、イギリスの鉄道での多くの事故を防ぐことができたが、完全に信号冒進を防ぐことはできなかった。高速で信号冒進して事故につながる例が1997年以降続出したため、イギリスの鉄道では信号現示の制限を強制することができる新しいTPWSに標準を更新した。

電流伝送

磁気伝送システムは、機械的伝送システムに比べれば磨耗の問題がないため好ましい。しかし20世紀初頭に、イギリスのグレート・ウエスタン鉄道では電気的な方式をテストした。これは、レールの間に長い棒を設置して、進行現示である時にはバッテリーにより供給された電流が流れるシステムであった。

電磁誘導伝送

電磁誘導伝送システムは、単純な磁界の存在に頼って伝送するシステムよりさらに進歩しているものである。この方式では、各信号機やその中間の必要とされる場所に地上子や誘導ループ線を設置する必要がある。誘導コイルが電磁界を変化させて列車に情報を伝送する。電磁波の周波数により異なる意味が割り当てられている。

電磁誘導伝送システムとしては、ドイツのIndusiやイギリスのTPWSなどの例がある。

コード軌道回路

模板:Main

コード軌道回路を用いるシステムは、本質的にはレールを情報送信機として利用する電磁誘導式システムである。コード軌道回路により標準の軌道回路の機能である列車の位置検知と、信号現示の連続的な列車への伝送の両方を実現している。この方式により、地上子を設置する必要がなくなっている。

コード軌道回路を用いたシステムの例としては、ペンシルバニア鉄道(Pennsylvania Railroad)の標準システムやロンドン地下鉄のヴィクトリア線、マサチューセッツ湾港湾局(MBTA)レッドラインのものがある[6]。可聴周波数(AF: Audio Frequency)軌道回路も、ハドソン-バーゲン・ライトレール(HBLR: Hudson-Bergen Light Rail)やニューアーク・ライトレール(Newark Light Rail)などで利用されている。可聴周波数軌道回路は、従来の商用周波数軌道回路に比べて情報の伝送と受信にデジタル信号処理技術を多用し、より安く単純に設計し実装することができる。

車内信号システムの分類

点制御、単一現示 点制御、複数現示 連続制御
グレート・ウエスタン鉄道(イギリス)(レディング(Reading) - ロンドン間に1910年、その他の本線には1930年までに導入) Indusi I-60R(1960年)、I-90(アルカテル 6641) ペンシルバニア鉄道、ルイスタウン(Lewistown)試験導入(1923年)、北東回廊(1930年代)、速度制限強制機能は1950年代に付加
打子式ATS: ニューヨーク市都市交通局、MBTAレッドライン イギリス国鉄ウェスタンリージョンATP(Advanced Train Protection)システム(1970年 ゼネラル・レールウェイ・シグナル(General Railway Signals)社製ATS、1960年代にシカゴ&ノース・ウェスタン鉄道(CNW: Chicago & North Western)、アッチソン・トピカ・サンタフェ鉄道(ATSF Aitchson Topeka & Santa Fe)、ニューヨーク・セントラル鉄道(NYC: New York Central)などに導入
イギリス国鉄AWS イギリス国鉄TPWS 可聴周波数コード軌道回路、ニューアーク地下鉄(Newark City Subway)やハドソン-バーゲン・ライトレールに導入
オタワのOトレイン用Indusi、東ドイツのIndusi PZBとI-54(1954年 ブルガリア アルカテル 6413 ペンシルバニア鉄道/ロングアイランド鉄道(Long Island Rail Road)自動速度制御(Automatic Speed Control)(1953年)、アムトラックショアー線(Shore Line)ACSES(1997年、PRRパルスコードを使用)、メトロ・ノースとニュージャージー・トランジットの通勤路線でも同様のシステムを導入
ニュージャージー・トランジットリバーライン 磁気列車停止装置(Magnetic Train Stops) インド・アンサルド試験線 ロンドン地下鉄ヴィクトリア線(PRR関連のシステム)
フランス国鉄のKVBシステム - KVB : Contrôle Vitesse par Balise (地上子方式速度制御) フランス国鉄のTGVではTVM-300とTVM430を使用。軌道回路方式。TVM : Transmission Voie-Machine (線路-列車伝送)
シカゴ交通局(CTA: Chicago Transit Authority)、マサチューセッツ湾交通局(1980年代から1990年代)、WMATAの自動列車運転(ATO)、PATCOのATO(1969年)、バートのATO(1975年) コード軌道回路方式
フロリダ・イースト・コースト鉄道(Florida East Coast Railway)速度制御機能付き車内信号を本線で使用

アメリカでの車内信号システム

アメリカ合衆国での車内信号システムは、州際通商委員会(ICC: Interstate Commerce Commission)が1922年に出した、運転保安装置のない列車は80マイル毎時以上出してはいけないという規制によって推進された。サンタ・フェ鉄道やニューヨーク・セントラル鉄道のようないくつかの大鉄道会社は、点制御の電磁誘導式運転保安装置を導入することによりこれに対応しようとしたが、ペンシルバニア鉄道では運転の効率性を改善できる可能性を見出して、最初の連続制御車内信号システムを導入した。

ペンシルバニア鉄道の導入に対応して、ICCは他の大鉄道会社に対して、少なくとも1つの地域では連続制御車内信号技術を試験的に導入して、技術の比較と運用の経験を積むように指令を出した。指示を受けた鉄道会社はあまり乗り気ではなく、ほとんどの会社ではその会社内で孤立した路線や交通量の少ない路線に導入することで、車内信号に対応した設備を搭載しなければならない機関車の数を減らせるようにした。

鉄道会社の中には、ペンシルバニア鉄道では拒否された電磁誘導式のループコイルを使ったものを選択したところもあった。ニュージャージー・セントラル鉄道(Central Railroad of New Jersey)(サザンディビジョンに導入)、レディング鉄道(Reading Railroad)(アトランティック・シティ本線(Atlantic City main line)に導入)、ニューヨーク・セントラル鉄道などである。シカゴ・ノースウェスタン鉄道(Chicago Northwestern)とイリノイ・セントラル鉄道(Illinois Central)は、2現示式のシステムをシカゴの郊外路線のいくつかに導入した。この車内信号では進行か制限かの情報を表示した。さらにシカゴ・ノースウェスタンは、エルムハースト(Elmhurst)と西シカゴの間の路線では中間の信号機を撤去して、車内信号だけに頼って運行するということも行った。

ペンシルバニア鉄道のシステムは、大規模に導入された唯一のものであったため、アメリカにおいてデファクトスタンダードとなり、現在用いられている車内信号システムはほぼこの方式である。近年、コミュニケーションベースの技術を利用して、路側設備や関連する従来の信号システムに関するコストを削減し、速度制限を強制し完全な停止を実現し、踏切の障害などにも対応する新しい車内信号方式が出現している。

新型の車内信号システムの最初のものとしては、ニュージャージー・トランジットが交通量の少ないパスカック・バレー線(Pascack Valley Line)に試験目的でGP40PH-2形ディーゼル機関車を使って導入した速度制御システム(SES: Speed Enforcement System)がある。SESでは、トランスポンダを路側の閉塞信号機に取り付けて信号現示の速度を強制するようになっている。SESは、警報を出して運転士がブレーキを掛けるような猶予を与えずにただちにブレーキを自動的に作用させるようになっている。SESは2007年に、ペンシルバニア鉄道式の車内信号システムに更新されてパスカック・バレー線から撤去された。

アムトラックは、ACSES(Advanced Civil Speed Enforcement System)と呼ばれるシステムをアセラ・エクスプレスに導入することを決定した。ACSESは、従来のペンシルバニア鉄道式車内信号のオーバレイとして導入され、SESと同じ方式のトランスポンダを使ってカーブやその他の線形上の速度制限を強制する仕組みになっている。車上の信号装置がパルスコードの信号機の現示速度とACSESの線形による制限速度を処理して、より低い方を適用する。ACSESでは絶対信号機の手前で完全に列車を停止させる機能を有し、さらに停車した機関車からデータ通信無線で送られた信号により、運転指令員がその信号機の現示を操作することができるようになっている。後にこれは車内信号装置のディスプレイ上に「停止現示解放」ボタンを設ける方式に変わった。ACSESはボストン - ワシントンD.C.間の北東回廊(Northeast Corridor)に徐々に導入が進められているが、使用されるのはたいていの場合高速列車のみである。

ペンシルバニア鉄道のパルスコード式車内信号システム

Amt Cab-signal-display

現代のアムトラックの車内信号装置。色灯化配列信号を表示している。この装置はACSESオーバレイに対応しており、20マイル毎時の速度制限を表示している。

1920年代にペンシルバニア鉄道によって導入された車内信号システムが最初の広く使用された車内信号装置であり、北アメリカにおいて今でも広く用いられている。この方式は、レールに流される電気信号に基づいて機関車の運転台に連続的に信号現示を表示するようになっている。技術はペンシルバニア鉄道と関係の深い、ユニオン・スイッチ・アンド・シグナルによって開発された。

最初の試験導入はサンバリー(Sunbury)とルイスタウン(Lewistown)の間で行われ、線路に3つの現示(制限、接近、進行)に対応した誘導ループ線を設置して、60Hzの商用周波数の信号を流すようにした。試験導入では路側の閉塞信号機を外して車内信号だけに頼って運転するということも行われた。ペンシルバニア鉄道ではもう1つのループ式システムをノーザン・セントラル線のボルチモア(Baltimore)とハリスバーグ(Harrisburg)の間に1926年に導入し、こちらでは100Hzの信号電流を使った。

1927年にペンシルバニア鉄道は、誘導ループの代わりにパルスコードを使った新しい車内信号の試験を開始した。100Hzの信号電流のパルスがレール面から数インチの高さで先輪の前にあるセンサーで電磁誘導により検出されるようになっていた。コードは180ppmでCLEAR、120ppmでAPPROACH MEDIUM、75ppmでAPPROACH、0でRESTRICTINGを表す。パルスの周波数は、信号の反射で生じる高調波成分が誤現示を引き起こさないように、どの現示でも他の現示の周波数の倍数にならないように選択されている[7]。このシステムは、信号電流が絶たれるとRESTRICTINGとなるので、フェイルセーフ性がある。コードは閉塞区間の先端から列車に向かって送信されるようになっており、これによりレールが破損したり他の列車が閉塞区間に進入したりすると、コードが途絶えて車内信号がRESTRICTINGになるようになっている。

檔案:US&S-Pulse-Code-Generator.jpg

US&Sの180ppm用電磁パルスコード発生装置

当初は、車内信号装置はATSのように動作して、信号現示が変化すると運転士がそれに対応して自動ブレーキが動作する前にブレーキを掛けることができるようになっていた。後に旅客用の機関車ではATCのように常に速度制限を強制するように改修された(APPROACH MEDIUM 45mph、APPROACH 30mph、RESTRICTING 20mph)。

時間をかけてペンシルバニア鉄道は車内信号システムを東部の鉄道路線に、ピッツバーグからフィラデルフィアまで、ニューヨークからワシントンまで導入した。電化が行われるに至り、レールに流れる帰線電流の25Hzの高調波成分を避けるためにコードの周波数は91と3分の2Hzに変更しなければならなかった[8]

このシステムは後にコンレール(Conrail)やアムトラックなど、ペンシルバニア鉄道の走っていた地域で通勤路線を運行している多くの鉄道会社に引き継がれた。車内信号システム区間を走る列車は全て装置を備えていなければならないため、これらの鉄道会社の機関車はほとんどが車内信号装置を備えている。インターオペラビリティの問題から、ペンシルバニア鉄道式の4現示車内信号システムはデファクトスタンダードとなっており、新たに導入される車内信号システムのほとんど全てがこのシステムを使うか、その互換のものとなっている。

ペンシルバニア鉄道式4現示車内信号システムを使用している路線

  • アムトラック北東回廊線
  • アムトラック ハリスバーグ線(Harrisburg Line)
  • アムトラック スプリングフィールド線(Springfield Line)
  • アムトラック ミシガン線(Michigan Line)
  • アムトラック ショアー線(Shore Line)(ニュー・ヘイヴン(New Haven)からプロヴィデンス(Providence)までは路側信号機なし)
  • ノーフォーク・サザン鉄道(Norfolk Southern) ピッツバーグ線(Pittsburgh Line)
  • ノーフォーク・サザン鉄道 コネモー線(Conemaugh Line)(路側信号機なし)
  • ノーフォーク・サザン鉄道 モリスヴィル線(Morrisville Line)(路側信号機なし)
  • ノーフォーク・サザン鉄道 フォート・ウェイン線(Fort Wayne Line)(コンウェイ・ヤード(Conway Yard)からアライアンス(Alliance)まで路側信号機なし)
  • ノーフォーク・サザン鉄道 クリーブランド線(Cleveland Line)(アライアンスからクリーブランドまで路側信号機なし)
  • CSXトランスポーテーション ボストン線(Boston Line)(路側信号機なし)
  • CSXトランスポーテーション ハドソン線(Hudson Line)
  • CSXトランスポーテーション ランドオーバー線(Landover Line)
  • CSXトランスポーテーション リッチモンド・フレデリクスバーグ・アンド・ポトマック線(Richmond, Fredericksburg and Potomac Railroad)(従来は60HzのRF&P車内信号を使用)
  • ニュージャージー・トランジット全線
  • メトロ・ノースのハドソン川以東全線(路側信号機なし)
  • メトロポリタン・トランスポーテーション・オーソリティ スタテンアイランド鉄道(閉塞信号機には使用せず)
  • マサチューセッツ湾交通局 オールド・コロニー線(Old Colony Line)(路側信号機なし)
  • フィラデルフィア・セプタ 本線
  • フィラデルフィア・セプタ エアポート線
  • フィラデルフィア・セプタ チェスナット・ヒル・ウェスト線(Chestnut Hill West Line)
  • フィラデルフィア・セプタ ネッシュアミティ線(Neshamity Line)
  • フィラデルフィア・セプタ フォックス・チェース線(Fox Chase Line)

関連するパルスコード式システム

  • ロングアイランド鉄道 Automatic Speed Control ロングアイランド鉄道はかつてペンシルバニア鉄道の子会社であったため、同じようなシステムを採用しているのは不思議なことではない。ロングアイランド鉄道はメトロポリタン・トランスポーテーション・オーソリティに1968年に買収されるまでペンシルバニア鉄道と同じ車内信号装置を使っており、その後それにわずかに変更を加えたASCシステムに移行した。ASCでは270ppmと420ppmの2つのコードを追加し、車上の信号表示装置を制限速度表示装置に取り替えている。追加のコードは50マイル毎時と60マイル毎時の制限に使われており、カーブや高速分岐器、短い閉塞区間などで現示される。
  • シカゴ・バーリントン・アンド・クインシー鉄道 オーロラ線車内信号 シカゴ・バーリントン・アンド・クインシー鉄道(CB&Q: Chicago, Burlington and Quincy)のオーロラ(Aurora)までの通勤路線では、ペンシルバニア鉄道と同じシステムが用いられているが、異なるルールで運用されており、ルートシグナル方式に部分的に基づく信号システムに対応するために路側の現示が用いられている。今日でも運用中である。
  • ユニオン・パシフィック鉄道 Automatic Train Control ユニオン・パシフィック鉄道(Union Pacific)は、ペンシルバニア鉄道式の技術をシカゴとワイオミング間の本線のほとんどと関連するいくつかの路線に近年導入した。CB&Qと同じように、同じシステムを異なるルールで運用しており、部分的にはルートシグナルに基づいた路側信号機の現示が用いられている。
  • メトラ・ロック・アイランド Automatic Train Control ロック・アイランド線ではその全盛期の時代からペンシルバニア鉄道式の車内信号システムが使われている。ジュリエット(Joliet)からシカゴまでのメトラの区間のロック・アイランド地区で用いられている。
  • Rapid Transit Lines 多くの都市高速交通路線では1990年代までにパルスコード式車内信号システムを導入して建設、または既存信号システムから置き換えた。都市高速交通路線では0のコードを完全な停止指示として取り扱うのでフェイルセーフである。フィラデルフィアのPATCOやセプタ、ボルチモアメトロ、マイアミ・デードメトロレールなどで用いられている。パルスコード式の技術は都市鉄道では次第に可聴周波数式の技術に取って代わられつつある。

PTC(Positive Train Control)

PTC(Positive Train Control)は、車内信号システムにオーバレイとして導入したり、それを完全に置き換えたりすることができるシステムである。PTCに含まれるシステムは、ゼネラル・エレクトリック社がミシガン州のシカゴ - デトロイト間に導入したITCS(Incremental Train Control System)と、イリノイ州のシカゴ - セントルイス間でテストされているNAJPTC(North American Joint Positive Train Control)がある。ITCSは2002年から90マイル毎時(145km/h)での営業運転を開始している[9]。他には、アラスカ鉄道のCAS、CSXトランスポーテーションのCBTM、BNSF鉄道のETMSなどがある。

可聴周波数(AF)軌道回路

パルスコード式軌道回路では1分間あたりのパルスの数をカウントするのに対し、可聴周波数(AF: audio frequency)軌道回路では、2000Hzから20000Hz程度の信号周波数を使用する。パルスコードが数マイル程度伝達するのに対し、可聴周波数は周波数が高いために減衰が速く、数百フィートから数千フィート程度しか伝達しない。しかしながらこれは、閉塞区間の長さにしっかり合わせた周波数を選択することで、軌道回路の絶縁をなくすことができるという利点がある。列車頻度が高く閉塞長が短い都市高速鉄道やライトレールシステムなどのシステムでは、これにより絶縁継ぎ目やインピーダンスボンドの数を減らすことができて、大きなコストダウンにつながる。

標準の軌道回路と全く同じように、可聴周波数軌道回路でも列車の位置検知機能と車上への信号現示の伝送を行える。車上装置は可聴周波数の伝送周波数から信号現示の情報を取り出して、列車制御装置によって警報を出したり列車の速度を自動的に調整したりする。

參考資料

  1. Automatic Train Control in Rail Rapid Transit, United States Congress Office of Technology Assessment, May 1976 NTIS order #PB-254738 http://www.princeton.edu/~ota/disk3/1976/7614/7614.PDF
  2. Elements of Railway Signaling, General Railway Signal (June 1979)
  3. Automatic Train Control in Rail Rapid Transit, United States Congress Office of Technology Assessment, May 1976 NTIS order #PB-254738 http://www.princeton.edu/~ota/disk3/1976/7614/7614.PDF
  4. Subway Signals: A Complete Guide, http://www.nycsubway.org/tech/signals/
  5. Railway Signalling -- A guide to modern signalling technology, Institution of Railway Signal Engineers. Published 1980.
  6. Tubeprune: Automatic Train Operation on the Victoria Line, http://www.trainweb.org/tubeprune/Victoria%20Line%20ATO.htm
  7. http://www.freepatentsonline.com/4437056.html
  8. http://www.prrths.com/PRR_Book_Errata_Pennsy_P5.html
  9. 模板:Cite web
Advertisement